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We derive a mean-field model for a semiflexible chain using a functional integral approach. The
resulting model satisfies the global constraint^u2(s)&51 rather than the hard constraint thatu2(s)51
for all s. The functionu(s) is the tangent vector]r /]s, wherer (s) represents the conformation of
the chain ands is the arc length. ©1995 American Institute of Physics.
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I. INTRODUCTION

The random walk model for neutral polymer is perha
the simplest mathematical model for long flexible chain1

The tremendous progress made in the theoretical underst
ing of configurational and dynamical properties of flexib
polymer systems becomes possible because systematic
culations using the random walk model can be carried ou
least in principle.2 This model is the minimal representatio
of real polymers that adequately describes the global prop
ties of several polymeric systems. The model views the fl
ible polymer chains as a Brownian curve. In the discre
representation, a flexible chain can be modeled as one
which angles between successive chain segments are not
related. Since the orientations of chain segments are inde
dent, the segment vectors have the Markovian property
that the mean squared end-to-end distance is proportiona
the numberN of segments of sizea in the chain. In the
continuous limit this chain becomes a Brownian curve. T
position vector of this chain is capable of undergoing ar
trary changes in direction and thus the tangential vectors
not well defined. Many polymeric molecules, however, e
hibit internal stiffness, thus restricting the allowed values
the angles between two successive segments. For such p
mers, called semiflexible or stiff chains, the angles betwe
segments are not uncorrelated, as is the case for flex
chains, but exhibit nonvanishing spatial correlations. A ma
ematical description of such chains should incorporate
effects of chain stiffness without violating homogeneity co
dition.

The effect of excluded volume can also be modeled
flexible chains. Although historically the importance of e
cluded volume was recognized sometime ago, the introd
tion of the Edwards to represent the effect of this short ran
interaction made possible systematic calculation of vario
static and dynamic properties using field theoretic
methods.2 In this paper, in which we focus on representatio
of semiflexible chains; the excluded volume effects will b
ignored.

A simple way to account for the stiffness of a semifle
ible chain is to constrain the angles between two succes
segmentsu to be fixed. The value ofu depends on the loca
stiffness of the chain. This prescription leads to the free
rotating chain model. If we describe the configurations o
polymer chain by the set of position vectors$rn%5~r0,...,rN!
or alternatively by the set of segment vecto
$Drn%5~r12r0,...,rN2rN21!, then the spatial correlation
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^Drn•Drn21&, in the freely rotating chain has the assigned
valuea2 cosu. In the continuous limit~a→0, u→0, N→`,
Na5L! the freely rotating chain becomes the so-calle
wormlike chain.3 In this case, the ratio 2a/u2 defines the
persistence length lp , which is the typical length scale over
which the chain changes its direction appreciably. Other co
formational properties of such a model are well known in th
literature.3–8

The spatial correlationŝDrn•Drm&, which characterize
the properties of a semiflexible chain, decay exponentially a
exp(2aun2mu/ l p). Thus the conformational properties of a
semiflexible chain beyond the length scalel p reduce to those
of flexible chains, i.e., one can view the stiff chain as bein
made up of several rigid segments of lengthl p that are freely
joined. However because of the intrinsic skeletal stiffness o
many synthetic polymers as well as biopolymers one nee
to develop a model that explicitly builds effects due to chai
bending. The chain stiffness turns out to be a relevant para
eter to the isotropic-nematic transition condition in liquid-
crystalline polymers.9 Even for an isolated chain, the chain
stiffness should be taken into account in the description o
the local properties of polymer chains. This is especially im
portant in polyelectrolytes. The scaling behavior of the elec
trostatic persistence lengthl e is known to depend on the
rigidity of the chain.10,11 Many biological molecules and
short chains of otherwise flexible chains also belong to th
class for which the chain stiffness plays an important role.

A number of theoretical models have been introduced i
the literature to account for chain stiffness. The earlies
model for stiff chains is the wormlike chain~also known as
Kratky–Porod model! in which the angles between succes
sive chains are constrained.3 Although physically reasonable
this model has not yielded analytically tractable results fo
equilibrium and dynamical properties. Harris and Hearst in
troduced a ‘‘simplified model’’ of stiff chains in which the
tangent vectoru(s)5]r /]s was allowed to fluctuate as op-
posed to having the constraintu2(s)51 for all s.5 It has been
noted that the resulting model does not represent homog
neously stiff chains. More recently a model that does no
suffer from this restriction was proposed by Lagowski, Nool
andi, and Nickel12 using a functional integral formalism.
These authors showed that the resulting model yielded t
mean squared end-to-end distance in agreement w
Kratky–Porod. The spatial correlations decay exponential
with a slightly shorter value of the persistence length.

In this paper we show that a model for stiff chains pro
posed by Lagowski, Noolandi, and Nickel~LNN! ~Ref. 12!
/95/103(21)/9408/5/$6.00 © 1995 American Institute of Physicsto¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



n

i

t

s
e

-

e

is-
e

th

i-
e
r-
e-

is
s
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results from a stationary phase evaluation of certain fu
tional integrals that occur in an appropriate field theory@cf.
Eq. ~8!#. Our approach is systematic and can be applied
other polymeric systems exhibiting more complicated inte
actions. The spirit of the theory presented here is in the sa
vein as the Mauer and Saupe theory of liquid crystals.13 We
should note that Winkleret al.14 have obtained a model for
stiff chains using the maximum entropy principle. These a
thors did not notice that their model in the continuum limit
identical to that of LNN. Furthermore their method appea
more cumbersome than the standard functional integral
proach presented here. In the next section the basic der
tion is presented and a few concluding remarks are given
Sec. III.

II. MEAN-FIELD MODEL

A. Flexible chains

The basic methodology can be illustrated using the si
pler example of a flexible chain. This is a limiting case of
stiff chain as the rigidity vanishes. The probability functio
for the flexible chain conformations without excluded vo
ume interactions can be written as

C$rn%5 )
n51

N

c~Drn!, ~1!

wherec5d~uDr u2a!/4pa2 denotes the random distribution
of a segment vector of lengtha. We can now rewrite the
probability weight in Eq.~1! by introducing auxiliary fields
ln as

C$rn%}E
2 i`

i`

)
n51

N

dln exp H 2 (
n51

N
ln

a
@~Drn!

22a2#J .
~2!

We now show that a stationary phase evaluation of
free energy of the chain described by above weight leads
the probability weight for the Brownian chain. This approx
mation amounts to relaxing the locally enforced constraint
~Drn!

25a2 to a globle one,̂~Drn!
2&5a2, and the validity of

the approximation can be justifieda posterioriasa→0. The
free energyF of a noninteracting flexible chain can be writ
ten as

exp~2F/kBT!5 const E
2 i`

i`

)
n51

N

dlnexp ~2F $ln%!,

~3!

where the free energy functionalF $ln% is defined by

F $ln%[2 ln F E )
n51

N

drn exp S 2a21(
n51

N

lnrn
2D G

2a(
n51

N

ln5 (
n51

N S 32 ln ln2lnaD 1 const .

~4!

In the above equation, the order of thern andln integrations
is interchanged. So far the formulation is exact. If we deno
the trajectoryln along which the integrand in Eq.~3! has its
J. Chem. Phys., Vol. 103,Downloaded¬22¬Apr¬2004¬to¬128.8.92.124.¬Redistribution¬subject¬
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maximum value byln
cl , then the free energy can be ex-

panded around this stationary phase trajectory,ln
cl . In the

following discussions the superscript cl will be omitted. In
the mean-field theory for which the constraint is imposed
only on an average, we retain only the leading term in thi
expansion and neglect correction terms to this. By setting th
partial derivative of the free energy functionalF $ln% with
respect toln , we get the stationary phase condition,

]

]ln
F $ln%50⇒ln5

3

2a
, 0<n<N. ~5!

The independence ofln on n reflects the symmetry of the
problem of an ideal flexible chain. Since the delta function
can be also represented asd~r !5lima→0(3/2pa2)3/2

exp~2r2/2a2!, the saddle-point evaluation becomes very ac
curate in the continuum limit,a→0. Thus long flexible
chains, i.e.,N@1 can be well described by the following
weight in the continuum limit:

C@r ~s!#} exp F2
3

2a E
0

L

dsS ]r

]sD 2G , ~6!

whereC@r (s)# is written in the functional integral notation
and is referred to as the Wiener measure. By treating th
random fieldsl(s) at the mean field level, the microscopic
constraints conjugate to the fieldsl(s), which ensure that the
chain segments are connected but otherwise randomly d
tributed, are relaxed to the global ones. This results in th
expected probability weight given in Eq.~6! for a long flex-
ible chain and is the Wiener measure obtained in the pa
integral description of a diffusion equation.

B. Stiff chains

The approach described above can be extended to sem
flexible chains. In these calculations we assume that th
stretching of two connected chain segments are not impo
tant so that there is no coupling between this degree of fre
dom and the bending degree of freedom.15 In this case, the
weight in Eq.~1! needs to be modified so that it yields non-
vanishing correlations^Drn•Drn21&5a2u252a3/ l p . This
can be achieved if we multiply the weight in Eq.~1! by the
Boltzman weight exp~l pa

23(n51
N21Drn11•Drn! corresponding

to the local interactions between adjacent segments. Th
term favors parallel alignment of adjacent segment
over bent configurations. In theln representation of the
probability weight, this can be rewritten as
exp@2 1

2l pa
23~Drn112Drn!

2# with a redefinition ofln . Then
the weight associated with a particular configuration of a
semiflexible chain becomes

C$rn%}E
2 i`

i`

)
n51

N

dln exp H 2 (
n51

N
ln

a
@~Drn!

22a2#

2
l p
2a3 (

n51

N21

~Drn112Drn!
2J . ~7!

In the continuum limit, this can be written in the functional
integral notation as
No. 21, 1 December 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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9410 B.-Y. Ha and D. Thirumalai: A mean-field model for semiflexible chains
C@u~s!#} exp F2
l p
2 E

0

L

dsS ]u

]sD 2G )
0<s<L

d@u2~s!21#,

~8!

whereu(s)[]r (s)/]s is a unit tangent vector. The propertie
associated with the weightC@u(s)# are well-known in the
literature.3–8 The random variableu(s) describes the rota-
tional Brownian motion on a unit sphere,u251. If we let
P~us ,us8;s8,s! be the probability thatu~s8!5us8 when
u(s)5us , then this function obeys a diffusion equation o
the unit sphere. The solution of the diffusion equation can
expanded in terms of spherical harmonics. This enables u
compute the following correlation:

^u~s8!•u~s!&5 exp ~2us82su/ l p!. ~9!

This correlation along with the Markovian property ofu lead
to the mean squared end-to-end distance given by

^R2&5E
0

LE
0

L

dsds8^u~s8!•u~s!&52l pL22l p
2~12e2L/ l p!.

~10!

Even though the results given in Eq.~9! and Eq.~10! are
exact, the use of Eq.~8! to describe nonideal semiflexible
chains turns out to be quite formidable. The major difficul
arises because of the constraintu2(s)51. One encounters
similar difficulty in other physical systems described by th
nonlinears model16 for which the magnitude of a spinS is
held fixed,S25const. Thus it is of very practical interest t
obtain a tractable model for such constrained systems.
will extend the stationary phase approach adopted for
flexible chain to obtain a tractable meanfield model for
semiflexible chain.

In our stationary phase approach, the fieldln is treated
as a parameter to be determined. The dependence ofln on n
depends on the problem under consideration. The free en
functional for an ideal semiflexible chain can be written a

F $ln%52 ln E )
n51

N

drn exp S 2
E

kBT
1a(

n51

N

lnD ,
~11!

whereE is given in a matrix form

Ea

kBT
5zTQz, ~12!

with z[$r1,...,rN%T. The 3N33N matrixQ is defined by

Qnm5lndnm2
l p
2a2

~11dnm61!. ~13!

Then the free energyF is given by

F $ln%5
3

2
ln ~det Q!2a(

n51

N

ln1 const . ~14!

The stationary phase evaluation ofln amounts to minimizing
the free energy with respect toln , i.e.,

]

]ln
F $ln%50⇒ 3

2

] ln ~det Q!

]ln
5a, 1<n<N. ~15!
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It can be easily shown that the minimization condition in Eq.
~15! amounts to requirinĝu2&51 in the continuous limit.
This follows because Eq.~15! can be rewritten as
]F /]ln5^~Drn!

2/a2&21. This is a set of simultaneous equa-
tions for the unknown parametersln for which we can not
find an analytical solution. An examination of the structure
of the matrixQ, however, leads to the following properties
of ln which satisfy the above equation;
l15lNÞl25,••• ,5lN21. For our purposes it suffices if
ln can be chosen so that^u2(s)&51 and other conformational
properties are reproduced. If allln are equal to each other, as
is the case for the flexible chain, then the chain described b
the probability weight in Eq.~7! shows inhomogeneity, i.e.,
the chain fluctuates more strongly at both ends than else
where. Having recognized the translational asymmetry in the
problem of a semiflexible chain, it is convenient to rewriteln
as follows: l15lN5l1d/a, ln5l(2<n<N21). With
these simplifications, the weight for the semiflexible chain at
the level of a stationary phase approximation becomes

C@u~s!#} exp F2lE
0

L

dsu2~s!2
l p
2 E

0

L

dsS ]u

]sD 2
2d~u0

21uL
2!G . ~16!

This functional is exactly identical in form to that proposed
by LNN. The explicit expression for detQ and thus the
saddle-point conditions forl andd can be obtained by set-
ting a recursion relation inN. Alternatively, we can exploit
an analogy between the path integral in Eq.~16! and the
harmonic oscillator in quantum mechanics.17 If Z~u0,uL ;L!
is the propagator of a harmonic oscillator of a massl p and a
frequency~2l/l p!

1/2, we can rewrite the free energy as

F @l,d#52 lnE du0duLexp@2d~u0
21uL

2!#

3Z~u0 ,uL ;L !2~Ll12d!1const

5
3

2
ln H Fd sinh LS 2l

l p
D 1/21S l l p

2 D 1/2
3cosh LS 2l

l p
D 1/2G22 l l p

2 J 2
3

2
ln S l l p

2 D 1/22 3

2

3 ln F sinh LS 2l

l p
D 1/2G2~Ll12d!1 const .

~17!

A little algebra leads to the following stationary phase con-
ditions forl andd :

S l l p
2 D 1/25d5

3

4
. ~18!

Note here that the values ofl and d do not depend on the
contour lengthL of a chain. Since the stationary phase con-
dition is imposed onl, only one ofl p or l is independent.

To understand features implied by the weight in Eq.~16!,
let us compute the correlation̂u(s)•u~s8!&. Using the Mar-
kovian property ofu, the correlation can be computed,
o. 21, 1 December 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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^u~s!•u~s8!&5
*D@u#u~s!•u~s8!C@u#

*D@u#C@u#

5 exp ~2us82su/ l 0!, ~19!

wherel 0[
2
3l p . A direct consequence of the above correlatio

is ^u2&51 and thus the constraintu251 is enforced only on
an average in the weight given in Eq.~16!. The above cor-
relation can be compared with one in Eq.~9! obtained with
the exact weight. A comparison of Eq.~19! and Eq. ~9!
shows that the persistence length for the approximate mo
for stiff chains@cf. Eq. ~16!# is smaller by a factor of23. The
plausible reason for this is the following: In the origina
model the constraint condition isu2(s)51 for all values ofs.
The model obtained by enforcing the global conditio
^u2&51 allows for unrestricted~restricted only on an aver-
age! fluctuations inu thus allowing for configurations that
would be prohibited by the restricted conditionu2(s)51.
Thus we would expectl 0 to be less thanl p . Winkler et al.14

have obtained exactly the same result@see their Eq.~4.18!#
using the maximum entropy principle. Since they also on
enforce the constraint on an average the resulting theory
described here, should be viewed as mean-field like. Ifl 0 is
understood as a new definition of the persistence length, th
the stationary phase weight in Eq.~16! predicts the same
conformational behaviour as the exact one in Eq.~8!. It is
worth noting that for a chain described by this weight wit
d50, the above correlation holds only for 0!s,s8!L. This
is because of the excess end fluctuations in this case.

For practical purposes it’s more convenient to use
translationally symmetric model for a semiflexible chain, i.e
one described byC@u(s)# in Eq. ~16! with d50. For ring
polymers for which the periodic conditionu~0!5u(L) and
the closure relation*0

Lu(s)ds50 are imposed, we expect al
the l(s) to be equal orl(s) should be independent ofs. In
this case, the free energyF can be written compactly with
H[lu211

2l p~]u/]s!
2 as follows:

F @l#52 ln trH d F E
0

L

u~s!dsGe2LHJ 2Ll

53 lnFsinhLS l

2l p
D 1/2G2

3

2
ln ~Ll!2Ll

1 const . ~20!

Now the stationary phase condition reads

S l pl2 D 1/253

4 F coth LS l

2l p
D 1/22 1

L S 2l pl D 1/2G . ~21!

Here we haveL-dependent condition forl. This is because
only paths which satisfy the periodic boundary conditio
u(L)5u~0! contribute to the free energyF . The periodic
boundary condition is also incorporated in the correlation
u(s), i.e.,

^u~s8!•u~s!&

5
cosh@~L22us82su!/2l 08#22l 08/L• sinh ~L/2l 08!

cosh~L/2l 08!22l 08/L• sinh ~L/2l 08!
,

~22!
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where l 08 [ ( l p /2l)1/2. Note here that^u(s1L)•u(s)&
5^u2(s)&51. In the limit ofL→`, however, the ring condi-
tions are irrelevant. That is the stationary phase conditio
and the correlation given above reduce to those of ope
chains. This can be checked by taking the limitL→` in
above equations for the ring polymers. Alternatively, fo
largeL, we can use the following formula:18

e2LH5e2LE0$u0&^0u1O @e2L~E12E0!#%, ~23!

whereE05
3
2~2l/l p!

1/2 andE15
5
2~2l/l p!

1/2. The ground state
denoted byu0& corresponds to the lowest eigenvalueE0 ofH
and is assumed to be unique and isolated. AsL→`, this
expression is dominated by the ground state. The term
exp~2LH! can be easily computed to yield the stationary
phase condition, i.e.,~l l p/2!1/253

4. Similarly the correlation
of u can be computed as follows:

^u~s8!•u~s!&5 exp @2~E12E0!~s82s!#

5 exp ~2us82su/ l 0!. ~24!

An alternative model~without derivation! for ring segments
has been proposed earlier.19 This involves modifying the
original Harris–Hearst model for open chains. Huberet al.
have computed quasielastic scattering for a modified versio
of this model.20

III. CONCLUSIONS

In this paper we have provided a derivation of the mode
for stiff chains introduced by Lagoiwski, Noolandi, and
Nickel.12 These authors sought to eliminate certain deficien
cies associated with the model of the sort suggested by H
ris and Hearst.5 LNN started from the weight given by

C@u#} exp F2
3

2a E
0

L

dsu2~s!2
l p
2 E

0

L

dsS ]u

]sD 2G .
~25!

The first term in the exponent accounts for the segment di
tribution while the second one corresponds to the bendin
energy. By noting that inhomogeneity is associated with th
chain described by this weight, they added a term
2d~u0

21uL
2! in the exponent to suppress excess end fluctu

tions. The same stationary phase conditions in Eq.~18! were
obtained to ensurêu2(s)&51. More recently, the same
model was suggested by Winkler, Reineker, and Harnau u
ing the maximum entropy principle supplemented by th
method of Lagrangian multipliers to account for the
constraints.14 The stationary phase scheme used here is
longer version of a brief result on the model of a semiflexibl
chain reported in our earlier work describing the calculatio
of electrostatic persistence length of a polyelectrolyt
chain.11We believe that this saddle-point approach is system
atic and straightforward way of dealing with constrained sys
tems and can be extended to polymer chains in more com
plicated circumstances. Our theory also offers justificatio
for the meanfield model for stiff chains proposed in earlie
studies.12
o. 21, 1 December 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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