A mean-field model for semiflexible chains
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We derive a mean-field model for a semiflexible chain using a functional integral approach. The
resulting model satisfies the global constrairf(s))=1 rather than the hard constraint td¢s) =1

for all s. The functionu(s) is the tangent vectair/ds, wherer(s) represents the conformation of

the chain and is the arc length. ©1995 American Institute of Physics.

I. INTRODUCTION (Ar,-Ar,_1), in the freely rotating chain has the assigned
value a? cosé. In the continuous limita—0, —0, N—oo,

The random walk model for neutral polymer is perhapsNa=L) the freely rotating chain becomes the so-called
the simplest mathematical model for long flexible chdins. wormlike chain® In this case, the ratio &6* defines the
The tremendous progress made in the theoretical understangersistence length,|, which is the typical length scale over
ing of configurational and dynamical properties of flexible which the chain changes its direction appreciably. Other con-
polymer systems becomes possible because systematic cédrmational properties of such a model are well known in the
culations using the random walk model can be carried out diterature®—2
least in principlé® This model is the minimal representation The spatial correlationgAr,-Ar ), which characterize
of real polymers that adequately describes the global propethe properties of a semiflexible chain, decay exponentially as
ties of several polymeric systems. The model views the flexexp(—a|n—m|/I,). Thus the conformational properties of a
ible polymer chains as a Brownian curve. In the discretesemiflexible chain beyond the length schjeeduce to those
representation, a flexible chain can be modeled as one faf flexible chains, i.e., one can view the stiff chain as being
which angles between successive chain segments are not caiade up of several rigid segments of lengtthat are freely
related. Since the orientations of chain segments are indepejoined. However because of the intrinsic skeletal stiffness of
dent, the segment vectors have the Markovian property smany synthetic polymers as well as biopolymers one needs
that the mean squared end-to-end distance is proportional to develop a model that explicitly builds effects due to chain
the numberN of segments of size in the chain. In the bending. The chain stiffness turns out to be a relevant param-
continuous limit this chain becomes a Brownian curve. Theeter to the isotropic-nematic transition condition in liquid-
position vector of this chain is capable of undergoing arbi-crystalline polymers.Even for an isolated chain, the chain
trary changes in direction and thus the tangential vectors arstiffness should be taken into account in the description of
not well defined. Many polymeric molecules, however, ex-the local properties of polymer chains. This is especially im-
hibit internal stiffness, thus restricting the allowed values ofportant in polyelectrolytes. The scaling behavior of the elec-
the angles between two successive segments. For such potyestatic persistence length is known to depend on the
mers, called semiflexible or stiff chains, the angles betweerigidity of the chain'®! Many biological molecules and
segments are not uncorrelated, as is the case for flexibkhort chains of otherwise flexible chains also belong to the
chains, but exhibit nonvanishing spatial correlations. A math<class for which the chain stiffness plays an important role.
ematical description of such chains should incorporate the A number of theoretical models have been introduced in
effects of chain stiffness without violating homogeneity con-the literature to account for chain stiffness. The earliest
dition. model for stiff chains is the wormlike chaiflso known as

The effect of excluded volume can also be modeled forKratky—Porod modelin which the angles between succes-
flexible chains. Although historically the importance of ex- sive chains are constrainddlthough physically reasonable
cluded volume was recognized sometime ago, the introduchis model has not yielded analytically tractable results for
tion of the Edwards to represent the effect of this short rangequilibrium and dynamical properties. Harris and Hearst in-
interaction made possible systematic calculation of variousroduced a “simplified model” of stiff chains in which the
static and dynamic properties using field theoreticaltangent vectou(s)=dr/ds was allowed to fluctuate as op-
methods In this paper, in which we focus on representationsposed to having the constraint(s) =1 for all s.° It has been
of semiflexible chains; the excluded volume effects will benoted that the resulting model does not represent homoge-
ignored. neously stiff chains. More recently a model that does not

A simple way to account for the stiffness of a semiflex- suffer from this restriction was proposed by Lagowski, Nool-
ible chain is to constrain the angles between two successivandi, and Nickéf using a functional integral formalism.
segmentd to be fixed. The value of depends on the local These authors showed that the resulting model yielded the
stiffness of the chain. This prescription leads to the freelynean squared end-to-end distance in agreement with
rotating chain model. If we describe the configurations of aKratky—Porod. The spatial correlations decay exponentially
polymer chain by the set of position vectdrs}=(rg,.../\) with a slightly shorter value of the persistence length.
or alternatively by the set of segment vectors In this paper we show that a model for stiff chains pro-
{Ar }=(r{—rp,.-..sN—Tn-1), then the spatial correlation, posed by Lagowski, Noolandi, and Nick@NN) (Ref. 12
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results from a stationary phase evaluation of certain funcmaximum value by)\f,', then the free energy can be ex-
tional integrals that occur in an appropriate field thel@l/  panded around this stationary phase trajectafy, In the
Eq. (8)]. Our approach is systematic and can be applied tgollowing discussions the superscript cl will be omitted. In
other polymeric systems exhibiting more complicated interthe mean-field theory for which the constraint is imposed
actions. The spirit of the theory presented here is in the samgnly on an average, we retain only the leading term in this
vein as the Mauer and Saupe theory of liquid crystille  expansion and neglect correction terms to this. By setting the
should note that Winkleet al.** have obtained a model for partial derivative of the free energy functionai{\,} with

stiff chains using the maximum entropy principle. These aurespect to\,, we get the stationary phase condition,

thors did not notice that their model in the continuum limit is ; 3

identical to that of LNN. Furthermore their method appears 2 _ _>

more cumbersome than the standard functional integral ap- J\, Fab=0=2, 2a’ O=n=N. ®

proach presented here. In the next section the basic deriva,,-he independence of, on n reflects the symmetry of the
H n

tion is presented and a few concluding remarks are given Ir;'Broblem of an ideal flexible chain. Since the delta function

Sec. Il can be also represented a&(r)=lim,  ,(3/2mwa?)?
exp(—r?/2a?), the saddle-point evaluation becomes very ac-
Il. MEAN-FIELD MODEL cura_lte in the continuum Iimita—>0._ Thus long flexiblle
_ _ chains, i.e.,N>1 can be well described by the following
A. Flexible chains weight in the continuum limit:

The basic methodology can be illustrated using the sim- 3 L [gr\2
pler example of a flexible chain. This is a limiting case ofa  W[r(s)]o= exp| — %a f ds( g)
stiff chain as the rigidity vanishes. The probability function 0
for the flexible chain conformations without excluded vol- where¥[r(s)] is written in the functional integral notation

, (6)

ume interactions can be written as and is referred to as the Wiener measure. By treating the
N random fields\(s) at the mean field level, the microscopic
W{r,l= H W(Ar,), ) constraints conjugate to the fieldgs), which ensure that the
n=1

chain segments are connected but otherwise randomly dis-

where y=&(|Ar|—a)/47a? denotes the random distribution tributed, are relaxed to the global ones. This results in the
of a segment vector of length. We can now rewrite the €xpected probability weight given in E¢6) for a long flex-

probability weight in Eq(1) by introducing auxiliary fields ible chain and is the Wiener measure obtained in the path
\, as integral description of a diffusion equation.

oo N N A
Wirgee |11 d, exp[—Z1 - [ar)?=al]y.

—jen=1 n=
2
We now show that a stationary phase evaluation of thql ex
free energy of the chain described by above weight leads t
the probability weight for the Brownian chain. This approxi-
mation amounts to relaxing the locally enforced constraint o
(Ar,)?>=a® to a globle one{(Ar,)?»=a? and the validity of
the approximation can be justifiedposterioriasa—0. The
free energyF of a noninteracting flexible chain can be writ-

B. Stiff chains

The approach described above can be extended to semi-
ible chains. In these calculations we assume that the
gtretching of two connected chain segments are not impor-
ant so that there is no coupling between this degree of free-
dom and the bending degree of freedbhin this case, the
weight in Eqg.(1) needs to be modified so that it yields non-
vanishing correlations(Ar,-Ar,,_j)=a®6°=2a%1,. This

can be achieved if we multiply the weight in EQ) by the

ten as Boltzman weight exfl,a >S[={Ar ., -Ar,)) corresponding
i N to the local interactions between adjacent segments. This
exp(—F/kgT)= const | dhnexp (—7{\n}), term favors parallel alignment of adjacent segments
il 3) over bent configurations. In thi, representation of the
probability  weight, this can be rewritten as
where the free energy functional{\,} is defined by exd —3l pa~ 3(Ar 41 —Ar)?] with a redefinition ofn,. Then
N N the weight associated with a particular configuration of a
FINt=—In f IT dr, exp(—a‘lz )\nrﬁ)} semiflexible chain becomes
n=1 n=1 . N N \
. . (3 Wirgbes |1 d, exp|—2 —[(Arp)?~a]
—aE )\n=2 = In Ny—A\,a|+ const. —ien=1 n=1 a
A=1 A=1 \ 2
| N-1
(4) —Z—apg n; (ArnH—Arn)Z]. @)

In the above equation, the order of thgand\, integrations
is interchanged. So far the formulation is exact. If we denotdn the continuum limit, this can be written in the functional
the trajectory\,, along which the integrand in E¢) has its  integral notation as
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It can be easily shown that the minimization condition in Eq.
(15 amounts to requiringu®=1 in the continuous limit.
This follows because EQq.(15 can be rewritten as
a7 10N, ={(Ar,)%/a%)—1. This is a set of simultaneous equa-

whereu(s)=dr(s)/Js is a unit tangent vector. The properties tions for the unknown parameteks for which we can not

associated with the weigh¥[u(s)] are well-known in the
literature®~® The random variablei(s) describes the rota-
tional Brownian motion on a unit sphera®=1. If we let
P(ug,ugy;s’,s) be the probability thatu(s’)=uy when

find an analytical solution. An examination of the structure
of the matrixQ, however, leads to the following properties
of N\, which satisfy the above equation;
Ni=ANFENy=, - ,=\y_1. FOr our purposes it suffices if

u(s)=us, then this function obeys a diffusion equation on )\, can be chosen so that?(s))=1 and other conformational
the unit sphere. The solution of the diffusion equation can bgyroperties are reproduced. If all are equal to each other, as
expanded in terms of spherical harmonics. This enables us ig the case for the flexible chain, then the chain described by

compute the following correlation:
(u(s')-u(s))= exp(—[s'—s|/ly). 9)

This correlation along with the Markovian propertywfead
to the mean squared end-to-end distance given by

(R?)= fOLfOLdeS(u(s’) . u(s)>:2|pL_2|§(1_e—L/|p)_
(10

Even though the results given in E§) and Eq.(10) are
exact, the use of Eq8) to describe nonideal semiflexible

chains turns out to be quite formidable. The major difficulty

arises because of the constrairf(s)=1. One encounters

the probability weight in Eq(7) shows inhomogeneity, i.e.,
the chain fluctuates more strongly at both ends than else-
where. Having recognized the translational asymmetry in the
problem of a semiflexible chain, it is convenient to rewkife

as follows: A;=Ay=A+6/a, A\p=A(2=<n=<N-1). With
these simplifications, the weight for the semiflexible chain at
the level of a stationary phase approximation becomes

fod 2 "’de il
- . su(s)—E . s&—s

. (16)

Wlu(s)]« exp

— S(up+up)

similar difficulty in other physical systems described by theThis functional is exactly identical in form to that proposed

nonlineare model® for which the magnitude of a spis is
held fixed,S?>=const. Thus it is of very practical interest to

by LNN. The explicit expression for d€ and thus the
saddle-point conditions fox and é can be obtained by set-

obtain a tractable model for such constrained systems. Wéng a recursion relation itN. Alternatively, we can exploit
will extend the stationary phase approach adopted for than analogy between the path integral in E§6) and the
flexible chain to obtain a tractable meanfield model for aharmonic oscillator in quantum mechantédf Z(ug,uy ;L)

semiflexible chain.
In our stationary phase approach, the figldis treated
as a parameter to be determined. The dependencgain

depends on the problem under consideration. The free energy( ), 5]= —In

functional for an ideal semiflexible chain can be written as

N N
E
FINgt=—In f || dr, exp ——+a2 An |,
n=1 kBT n=1

(11)
whereE is given in a matrix form

Ea_ T
kB—T—é Q¢ (12

with Z={r,,...ry}". The NX3N matrix Q is defined by

I
Qnm:)\nénm_z_ap_z (1+ Snme1)- (13
Then the free energy is given by
N
3
TN} = Eln (det Q)—aE An+ const . (14
n=1

The stationary phase evaluation\gfamounts to minimizing
the free energy with respect iq,, i.e.,

3 dIn (det Q) 3
2 o, @

e TN} =0=

5 1sn<N. (15

is the propagator of a harmonic oscillator of a mgsand a
frequency(2M1,)M2, we can rewrite the free energy as

f dugdugexy — 8(uz+u?)]

XZ(Ug,u, ;L)—(LA+26)+const

3 2)\ 1/2 )\I 1/2
== Ini{|S sinh L| — +1 =P
2 lp 2
wcosh L 2_}\ 1/2 2_)\_Ip _§ )\_Ip 1/2_§
lp 2 2 2 2
2N 1/2
XIn| sinh L(I—) }—(L)\+25)+ const .
p
17

A little algebra leads to the following stationary phase con-
ditions for\ and &

Mp\t2 o 3
E

7
Note here that the values af and 6 do not depend on the
contour lengthL of a chain. Since the stationary phase con-
dition is imposed om\, only one ofl , or A is independent.

To understand features implied by the weight in Bd),
let us compute the correlatidui(s) -u(s’)). Using the Mar-
kovian property ofu, the correlation can be computed,

(18
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[ ulu(s)-u(s")¥[u] where 1§ = (1,/2\)*2 Note here that(u(s+L)-u(s))
(u(s)-u(s’))= IZ R =(u¥(s))=1. In the limit of L—o°, however, the ring condi-

tions are irrelevant. That is the stationary phase condition
and the correlation given above reduce to those of open
chains. This can be checked by taking the limbitsoo in
wherelozélp.Adirect consequence of the above correlationabove equations for the ring polymers. Alternatively, for
is (u?=1 and thus the constrainf=1 is enforced only on largeL, we can use the following formuf&:

an average in the weight given in EG.6). The above cor- CLw LE S LEEy)

relation can be compared with one in E§) obtained with e -7=e t5{[0)(0]+ e HFr TR}, (23)

the exact weight. A comparison of E419 and Eq.(9) here Eg=3(2MI p)1/2 and E, =52\ p)1/2_ The ground state

shows that the persistence length for the approximate mod%\f ted byO ds to the | t ei fw
for stiff chains[cf. Eq. (16)] is smaller by a factor of. The enoted by0) corresponds to the lowest eigenvatiigof . 7

lausibl for this is the followina: In th iinal and is assumed to be unique and isolated.LAsx, this

fn‘gg: tr?er;?r?;rr]air?trcorfjitliz N is%(sc))—oi,vflgrgéllr\]/alueesoczlfgma expression is dominated by the ground state. The term tr
. > " exp(—L.%) can be easily computed to yield the stationar

The model obtained by enforcing the global condition n /) y D y y

" ; 12_3 Qim;i ;
o . . phase condition, i.e(\l,/2)~“=3. Similarly the correlation
unH=1 aIIovys for' unrestrlctedrgstrlcted only on an aver- ¢\ oo he computed as follows:
age fluctuations inu thus allowing for configurations that

= exp(—|s'—sl|/ly), (19

would be prohibited by the restricted conditiari(s)=1. (u(s")-u(s))= exp[—(E1—Ep)(s'—9)]
Thus we would expedt, to be less that, . Winkler et al*
have obtained exactly the same regske their Eq(4.18)] = exp(—|s' —sl|/ly). (24)

using the maximum entropy principle. Since they also only

enforce the constraint on an average the resulting theory, &1 alternative mode{without derivation for ring segments
described here, should be viewed as mean-field liké, i  has been proposed earltérThis involves modifying the
understood as a new definition of the persistence length, the@figinal Harris—Hearst model for open chains. Hukeeal.

the stationary phase weight in E(L6) predicts the same have computed quasielastic scattering for a modified version
conformational behaviour as the exact one in ). Itis  of this modef°

worth noting that for a chain described by this weight with

=0, the above correlation holds only forGs,s’ <L. This

is because of the excess end fluctuations in this case. lIl. CONCLUSIONS
For practical purposes it's more convenient to use a
translationally symmetric model for a semiflexible chain, i.e.,  In this paper we have provided a derivation of the model

one described byP[u(s)] in Eq. (16) with 5=0. For ring  for stiff chains introduced by Lagoiwski, Noolandi, and
polymers for which the periodic condition(0)=u(L) and  Nickel.}? These authors sought to eliminate certain deficien-
the closure relatiorf§u(s)ds=0 are imposed, we expect all cies associated with the model of the sort suggested by Har-
the \(s) to be equal on(s) should be independent &f In ris and Hearst.LNN started from the weight given by

this case, the free energy can be written compactly with 3 (L | L [ gu\?2
u
_ 2(ay_ P _
72 jo dsu?(s) > fo ds( as) .

T=\uP+3l (aulds)? as follows:
L
f u(s)ds
° The first term in the exponent accounts for the segment dis-
. e tribution while the second one corresponds to the bending
sinh L(Tp) }_ 2 In (LA) =LA energy. By noting that inhomogeneity is associated with the
chain described by this weight, they added a term
+ const . (20 —&u3+u?) in the exponent to suppress excess end fluctua-
tions. The same stationary phase conditions in(E§). were
obtained to ensurdu?(s))=1. More recently, the same
model was suggested by Winkler, Reineker, and Harnau us-
ing the maximum entropy principle supplemented by the
method of Lagrangian multipliers to account for the
constraints?* The stationary phase scheme used here is a
longer version of a brief result on the model of a semiflexible
fchain reported in our earlier work describing the calculation
of electrostatic persistence length of a polyelectrolyte

Wlu]ec exp

ZIN]==In tr{& e‘”‘}—L)\

=3 In

Now the stationary phase condition reads

(lp)\>1/2_3 Y )l/Z 1 (le)1/2

5 2 coth L(— Tl

2l,) L )

Here we have.-dependent condition fox. This is because
only paths which satisfy the periodic boundary condition
u(L)=u(0) contribute to the free energy’. The periodic

boundary condition is also incorporated in the correlation o

u(s), i.e., chain!! We believe that this saddle-point approach is system-
(u(s’)-u(s)) atic and straightforward way of dealing with constrained sys-
) tems and can be extended to polymer chains in more com-

_cosh[(L—2[s'—s|)/2lg]—2l¢/L - sinh(L/2l) plicated circumstances. Our theory also offers justification

B cosh(L/2l§)—2l4/L- sinh(L/2lg) ' for the meanfield model for stiff chains proposed in earlier

(22)  studiest?
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